如果说这个世界上有完美的实验,那么斯坦福大学化学工程教授Zhenan Bao最近的努力就完全符合要求。
她团队的一位成员,Cheng-Hui Li想要测试他刚刚合成的弹性体的延展性(这种材料是一种橡胶类的塑料)。这种材料通常可以拉伸到其原始长度的两到三倍,还能回弹到它原来的尺度。一个普通的压力测试包括一直拉伸这种弹性体直到超过它的断裂点。
但是Li,一位来自中国的访问学者,遇到了意外的困难:夹具通常测量的弹性只能拉伸到45英寸。想要找到一英寸长的样本的断裂点,Li和另一位实验室成员各持一端,然后各自后退,最后将这个一英寸长的聚合物膜拉伸到100英寸以上。
Bao惊呆了。
“我说,‘这怎么可能?你肯定吗?’”她回忆说。
在今天发表的《自然化学》期刊上,研究人员解释了他们是如何制造这种超弹性物质的。他们还表示,他们可以通过将其暴露在电场中,引起它的扩张和收缩,从而让这个新的弹性体抽动,开发其作为人造肌肉的潜在利用价值。
目前,人造肌肉在消费技术和机器人领域都有应用,但是与真正的肌肉相比,它们有很多缺点,Bao说。目前,用于制造人造肌肉的材料上的小洞或缺陷会让材料失去弹性。如果被刺穿或划伤,它们也无法进行自我修复。
但是这种新材料,除了具有非凡的延展性之外,还具有显着的自愈特性。损坏的聚合物通常需要溶剂或热处理才能恢复性能,但是这种新材料在室温下,即使已经损坏好几天的时间,依然表现出了令人赞叹的自我修复能力。实际上,科研人员发现,它在零下4华氏度(零下20℃)或者在商业冷藏库的温度下也能自我修复。
该团队将新材料的这种非凡的延展性和自我修复能力归因于交叉链接(一种化学粘合法)的一些关键改进。这个过程是指渔网状连接的分子连接成为直链,让聚合物产生了十倍的拉伸能力。
首先,他们设计了一种特殊的有机分子,在交叉链接过程中附着在短聚合物链上,来创造一系列的配体结构。这些配体结合在一起形成长聚合物链——具有内在张力的弹簧圈。
然后,他们在材料中加入金属离子,这些离子对于配体来说具有化学亲和性。当这种复合材料处于受力状态,金属离子和配体之间的化学亲和性就会将网状的分子结构拉紧。其结果就得到了强大的、可伸缩的、自我修复的弹性体。
“聚合物通过金属离子和配体之间的亲和性链接在一起,好像一个大网一样,”Bao解释道。“每一个金属离子至少与两个配体结合,因此,即使一个配体的一端断裂,金属离子仍然可以与配体的另一端相连。当压力被释放时,离子可以很轻松地域另一个配体重新连接,如果它们足够靠近的话。”
研究团队发现,他们可以通过改变金属离子的加入量来调节聚合物,让它变得更有弹性或自愈的更快。这个版本的材料超出了机器的测量范围,例如,通过降低聚合物中铁原子和材料中有机分子的比例就可以创造出新的版本。
研究人员还表明,这种添加金属的新聚合物能够在电场中抽动。他们还要做更多的工作来增加材料的扩张和收缩程度,从而更加精确地控制它。这一研究为未来有前景的应用开启了大门。
除了其作为人造肌肉的长期潜在利用,这项研究还能用于帮助使用假肢的人恢复部分感知能力。在之前的研究中,她的研究团队创造了了灵活但脆性强的聚合物,上面镶有压力传感器,来探测握手和蝴蝶降落的差异。这种新的、耐用材料可以开发成为人造皮肤物理结构的一部分。
“人造皮肤不是由一种材料制成的,”Franziska Lissel说,他是Bao实验室的博士后研究员,也是该研究团队的成员。“我们想要创造一个非常复杂的系统。”
即使在人造肌肉和人工皮肤变成实用性技术之前,这项工作也非常重要,强大、灵活和电子活性聚合物的开发,能够引发新一代的可穿戴电子产品,或者能够制造使用很长时间不需要修理或更换的医疗植入物。
Researchers create super stretchy, self-healing material that could lead to artificial muscle
If there's such a thing as an experiment that goes too well, a recent effort in the lab of Stanford chemical engineering Professor Zhenan Bao might fit the bill.
One of her team members, Cheng-Hui Li, wanted to test the stretchiness of a rubberlike type of plastic known as an elastomer that he had just synthesized. Such materials can normally be stretched two or three times their original length and spring back to original size. One common stress test involves stretching an elastomer beyond this point until it snaps.
But Li, a visiting scholar from China, hit a snag: The clamping machine typically used to measure elasticity could only stretch about 45 inches. To find the breaking point of their one-inch sample, Li and another lab member had to hold opposing ends in their hands, standing further and further apart, eventually stretching a 1-inch polymer film to more than 100 inches.
Bao was stunned.
“I said, 'How can that be possible? Are you sure?‘” she recalled.
Today in Nature Chemistry, the researchers explain how they made this super-stretchy substance. They also showed that they could make this new elastomer twitch by exposing it to an electric field, causing it to expand and contract, making it potentially useful as an artificial muscle.
Artificial muscles currently have applications in some consumer technology and robotics, but they have shortcomings compared to a real bicep, Bao said. Small holes or defects in the materials currently used to make artificial muscle can rob them of their resilience. Nor are they able to self-repair if punctured or scratched.
But this new material, in addition to being extraordinarily stretchy, has remarkable self-healing characteristics. Damaged polymers typically require a solvent or heat treatment to restore their properties, but the new material showed a remarkable ability to heal itself at room temperature, even if the damaged pieces are aged for days. Indeed, researchers found that it could self-repair at temperatures as low as negative 4 degrees Fahrenheit (-20 C), or about as cold as a commercial walk-in freezer.
The team attributes the extreme stretching and self-healing ability of their new material to some critical improvements to a type of chemical bonding process known as crosslinking. This process, which involves connecting linear chains of linked molecules in a sort of fishnet pattern, has previously yielded a tenfold stretch in polymers.
First they designed special organic molecules to attach to the short polymer strands in their crosslink to create a series of structure called ligands. These ligands joined together to form longer polymer chains – spring-like coils with inherent stretchiness.
Then they added to the material metal ions, which have a chemical affinity for the ligands. When this combined material is strained, the knots loosen and allow the ligands to separate. But when relaxed, the affinity between the metal ions and the ligands pulls the fishnet taut. The result is a strong, stretchable and self-repairing elastomer.
“Basically the polymers become linked together like a big net through the metal ions and the ligands,” Bao explained. “Each metal ion binds to at least two ligands, so if one ligand breaks away on one side, the metal ion may still be connected to a ligand on the other side. And when the stress is released, the ion can readily reconnect with another ligand if it is close enough.”
The team found that they could tune the polymer to be stretchier or heal faster by varying the amount or type of metal ion included. The version that exceeded the measuring machine's limits, for example, was created by decreasing the ratio of iron atoms to the polymers and organic molecules in the material.
The researchers also showed that this new polymer with the metal additives would twitch in response to an electric field. They have to do more work to increase the degree to which the material expands and contracts and control it more precisely. But this observation opens the door to promising applications.
In addition to its long-term potential for use as artificial muscle, this research dovetails with Bao's efforts to create artificial skin that might be used to restore some sensory capabilities to people with prosthetic limbs. In previous studies her team has created flexible but fragile polymers, studded with pressure sensors to detect the difference between a handshake and a butterfly landing. This new, durable material could form part of the physical structure of a fully developed artificial skin.
“Artificial skin is not just made of one material,” said Franziska Lissel, a postdoctoral fellow in Bao's lab and member of the research team. “We want to create a very complex system.”
Even before artificial muscle and artificial skin become practical, this work in the development of strong, flexible, electronically active polymers could spawn a new generation of wearable electronics, or medical implants that would last a long time without being repaired or replaced.
来源:中国科技网 作者:编译:张微
为你推荐
资讯 杰特贝林与百洋医药强强联合,深度布局中国血液制品黄金赛道
百洋医药将获得杰特贝林旗下人血白蛋白产品安博美®在中国区域内(不包括香港、澳门及台湾地区)特定市场的独家推广、销售和经销权益。
2025-11-04 19:24
资讯 新版基本医保药品目录及首版商保创新药目录拟12月第一个周末在广州发布
10月30日-11月3日,国家医保局组织开展2025年国家基本医保药品目录谈判竞价和商保创新药目录价格协商工作,120家内外资企业现场参与,其中参与基本医保药品目录谈判竞价的目录外...
2025-11-04 18:42
资讯 健尔圣完成近亿元B轮融资,加速重金属解毒药物研发
本轮融资由广东省江西商会会长、润都制药创始人李希博士领投 8000 万元,著名天使投资人龚虹嘉旗下的嘉道资本追加投资
2025-11-04 15:49
资讯 市场监管总局:7起老年人药品、保健品虚假宣传典型案例
2025年,市场监管总局按照深化群众身边不正之风和腐败问题集中整治要求,部署开展老年人药品、保健品虚假宣传专项整治,取得积极成效。现选取一批典型案例予以公布。
2025-11-01 17:32
资讯 CDE:老年人群参与创新药临床试验的关键要素及试验设计要点(试行)
本指导原则旨在完全实施ICH E7的前提下,提出老年人群参与的创新药临床试验所涉及的一些关键要素及试验设计中的要点,并未涵盖药物临床试验的全流程或与药物临床试验设计相关的...
2025-11-01 17:09
资讯 2026年1月1日,启用新版《药品生产许可证》《放射性药品生产许可证》样式
新版许可证正、副本登载不同的二维码,并分别标注正本二维码和副本二维码字样。正本二维码展示企业基本信息,副本二维码除展示企业基本信息外,同时封装企业车间和生产线、委托...
2025-10-31 17:30
资讯 迈科康生物完成超 4 亿元 D 轮融资,核心疫苗研发加速冲刺
本轮融资由 IDG、深创投和瑞普医药联合注资,所募资金将重点投向重组带状疱疹疫苗上市准备、重组呼吸道合胞病毒(RSV)疫苗 III 期临床研究,以及多个创新疫苗管线的临床前研...
2025-10-31 17:15
资讯 “全勤生”罗氏:携十余款即将在华上市及未来管线产品首展首秀,加速迈向全疾病领域领航者
第八届中国国际进口博览会(以下简称进博会)进入开幕倒计时,作为最早向商务部表示支持并深度参与进博会的跨国企业,“全勤生”罗氏制药将连续第八年如期赴约。
2025-10-31 15:25
资讯 百时美施贵宝公布两项最新研究数据证实氘可来昔替尼可有效治疗银屑病关节炎及系统性红斑狼疮
截至第52周,氘可来昔替尼在POETYK PsA-1试验中的安全性特征与既往临床表现一致, 未发现新的安全信号
2025-10-29 17:34
资讯 备思复™(维恩妥尤单抗)联合帕博利珠单抗的补充生物制品许可申请(sBLA)已获FDA优先审评资格,用于治疗特定肌层浸润性膀胱癌患者
关键III期研究EV-303结果显示,顺铂不耐受的肌层浸润性膀胱癌患者围手术期使用该联合方案,可将复发、进展或死亡风险降低60%,死亡风险降低50%。
2025-10-29 16:13
资讯 HPV,男女共防,一则来自专家的提醒
每年10月28日是“世界男性健康日”,该节日的设立旨在进一步推动男性生殖健康知识的普及、强化疾病预防工作,以及重点关注男性心理健康等问题。
2025-10-29 15:54










